Sobre los efectos de ram pressure en las galaxias y sus alrededores

Silvio Rodríguez

Director: Dr. Diego Garcia Lambas Comisión Asesora: Dr. Manuel Merchán. Dr. Martín Leiva. Dr. Dante Paz

Mayo 9, 2019

- Introducción
 - Galaxias en caída hacia grupos
 - Ram pressure
 - Evidencias de ram pressure
- Efectos de Ram Pressure en simulaciones
- 3 Análisis del enrojecimiento de quasares de fondo
 - Muestras
 - El método
 - Correcciones a la muestra
 - Resultados
 - Por otras características
- Análisis del efecto sobre la galaxia
 - El método II
 - Resultados II
 - $\Delta C \leftrightarrow$ enrojecimiento del entorno
- Conclusiones

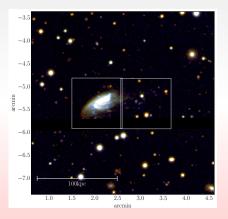
- Introducción
 - Galaxias en caída hacia grupos
 - Ram pressure
 - Evidencias de ram pressure
- 2 Efectos de Ram Pressure en simulacione
- 3 Análisis del enrojecimiento de quasares de fondo
 - Muestras
 - El método
 - Correcciones a la muestra
 - Resultados
 - Por otras características
- Análisis del efecto sobre la galaxia
 - El método I
 - Resultados I
 - $\Delta C \leftrightarrow$ enrojecimiento del entorno
- 5 Conclusiones

- Las primeras estructuras colapsan a partir de pequeñas sobredensidades, agrupándose luego en estructuras más grandes.
- Las galaxias se forman antes que los grupos y cúmulos.
- Las galaxias sufren diversos efectos al entrar en grupos:
 - Gravitacionales: mergers, encuentros próximos (galaxia-galaxia, galaxia-grupo), *harrasment*, etc.
 - Hidrodinámicos: evaporación termal, *stripping* viscoso y *ram pressure stripping*.

- Fenómeno descrito por primera vez en 1973 por Gunn & Gott¹.
- Ocurre al encontrarse la galaxia con el gas del medio intra-cúmulo.
 donde siente una presión dada por:

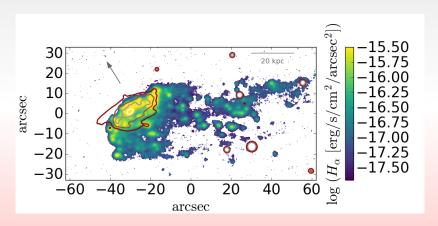
$$P \approx \rho_e v^2$$

- Esto produce:
 - Un aumento temporal de la SFR.
 - Una perdida de material (polvo, gas) que termina reduciendo la formación estelar.
- En algunos casos se produce formación estelar en la columna de material perdido.


En simulaciones

- Es necesario aplicarlo en modelos semi-analíticos para reproducir propiedades (e.j. función de masa estelar).
- Aparece en simulaciones hidrodinámicas.

En observaciones

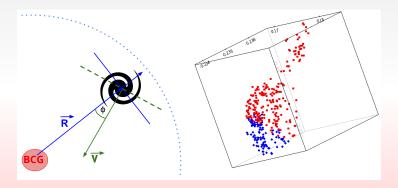

- Galaxias de forma asimétricas.
- Perfiles radiales truncados.
- Gas (HI) arrancado en cúmulos y grupos en galaxias cercanas.
- Formación estelar en la columna de gas en UV y visible.
 - A los caso evidentes de formación estelar en la "cola" se les llama galaxias *jellyfish*.
 - Se estima que un 40% de las late-type en cúmulos son jellyfish.

Galaxia JO206 (z=0.0513, R.A.=21:13:47.4, decl. =+ 02:28:35.5, J2000) en color a partir de las bandas u, B y V, y en emisión de H_{α} .²

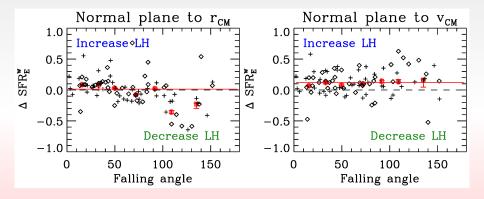
²Poggianti B. M. et al., 2017, ApJ, 844, 48

Galaxia JO206 (z=0.0513, R.A.=21:13:47.4, decl. =+ 02:28:35.5, J2000) en color a partir de las bandas u, B y V, y en emisión de H_{α} .²

²Poggianti B. M. et al., 2017, ApJ, 844, 48


- Introducción
 - Galaxias en caída hacia grupos
 - Ram pressure
 - Evidencias de ram pressure
- Efectos de Ram Pressure en simulaciones
- 3 Análisis del enrojecimiento de quasares de fondo
 - Muestras
 - El método
 - Correcciones a la muestra
 - Resultados
 - Por otras características
- Análisis del efecto sobre la galaxia
 - El método l
 - Resultados I
 - $\Delta C \leftrightarrow$ enrojecimiento del entorno
- Conclusiones

- Troncoso-Iribarren et al. 2016³(TI16) analiza el efecto de la RP en simulaciones.
- Se usan datos de la simulación hidrodinámica EAGLE.
- Se analizan galaxias en *infall* con al menos 100 partículas en grupos masivos ($> 10^{13.8} M_{\odot}$).


- Troncoso-Iribarren et al. 2016³(TI16) analiza el efecto de la RP en simulaciones.
- Se usan datos de la simulación hidrodinámica EAGLE.
- Se analizan galaxias en *infall* con al menos 100 partículas en grupos masivos ($> 10^{13.8} M_{\odot}$).
- La idea es analizar la tasa de formación estelar en diferentes zonas de la galaxia.
- Se estudian dos casos:
 - Observación: En función al vector al centro del grupo.
 - Simulación: En función al vector velocidad de la galaxia.
- Y se separa la galaxia en dos partes, la *leading half* (la mitad más cercana a la dirección del vector escogido) y la *trailing half*.

³Troncoso-Iribarren P. et al., 2016, Galaxies, 4, 77

Esquemas del método usado.

Resultados

Diamantes: Grupos relajados. Cruces: Grupos no relajados.

- Introducción
 - Galaxias en caída hacia grupos
 - Ram pressure
 - Evidencias de ram pressure
- Efectos de Ram Pressure en simulaciones
- 3 Análisis del enrojecimiento de quasares de fondo
 - Muestras
 - El método
 - Correcciones a la muestra
 - Resultados
 - Por otras características
- Análisis del efecto sobre la galaxia
 - El método I
 - Resultados I
 - ullet $\Delta C \leftrightarrow$ enrojecimiento del entorno
- 5 Conclusiones

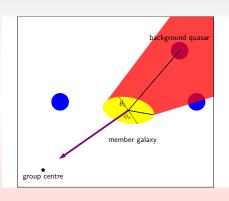
- El objetivo es caracterizar el enrojecimiento alrededor de las galaxias en *infall* debido al polvo.
- Analizamos el enrojecimiento sistemático de QSOs lejanos alrededor de galaxias en grupos.
- Si la RPS es un mecanismo importante, esperamos una anisotropía en la distribución de color, causada por el polvo arrancado de las galaxias en infall.

Para las galaxias

De los grupos de Yang (Yang X. et al., 2012, ApJ, 752, 41) se seleccionan las galaxias que:

- Grupos de al menos 4 miembros.
- b/a < 0.5.
- $M_r < -15$.
- $R_{50} > 1.5$ arcsec.

Los grupos están un rango de redshift entre 0 < z < 0.2.


Para los quasares

Muestra QSOs de BOSS (Pâris I., et al., 2017, A&A, 597, A79) con:

• 2 > z > 3.5.

Usamos cosmología WMAP7.

- Tomamos las galaxias al menos a una distancia de $0.5r_{180}$ del centro del grupo.
- Para cada galaxia medimos un círculo de 600 kpc/h.
- Se toman los QSOs que en proyección caen dentro de ese círculo.
- Se mide la distribución de color en función de θ_i .
- Este calculo se repite para "zonas de control" a igual distancia del centro del grupo.

¿Por qué quedarnos con $> 0.5r_{180}$?.

- Para evitar efectos de crowding.
- Zonas donde es más probable que la galaxia este en infall.

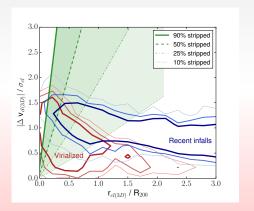
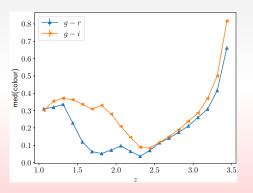
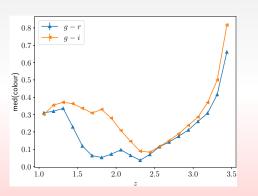
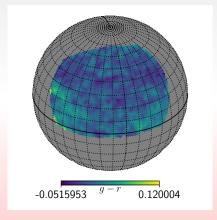
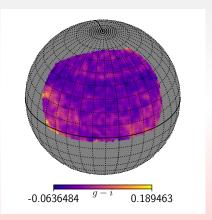
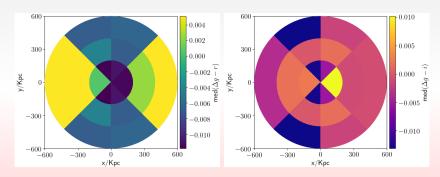




Figura de Jaffe et al., 2018, MNRAS, 476, 4753 donde: Virializado: $t_{\sf entrada} > 4$ Gyrs. Infall reciente: $t_{\sf entrada} < 2$ Gyrs.

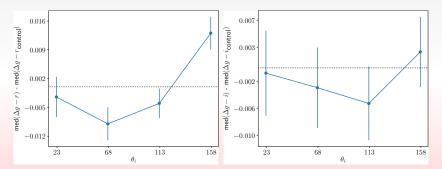
S. Rodríguez




- Es necesario tener en cuenta efectos sistemáticos sobre el color de los QSOs.
- Algunos efectos dependen del z.
 Otros de su posición en el cielo.


- Es necesario tener en cuenta efectos sistemáticos sobre el color de los QSOs.
- Algunos efectos dependen del z.
 Otros de su posición en el cielo.
- Para la distancia le restamos a cada QSOs el valor medio de color de ese z.
- Para la posición, creamos mapas con el color promedio usando HEALpix, con un suavizado de 2 grados.
- Además solo nos quedamos con las galaxias y qsos sobre $b > 40^{\circ}$.

Mapas de color usados para corregir los colores de los QSOs.



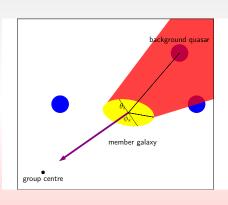
Mapas de color alrededor de las galaxias.

Variación de la mediana de color en función de θ_i respecto a las zonas de control.

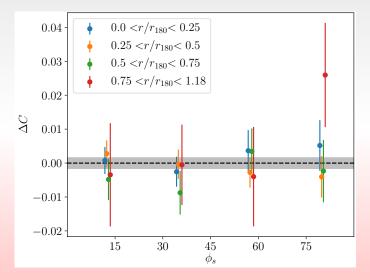
Separamos la muestra de galaxias de acuerdo a características intrínsecas de la galaxia y del grupo:

- Ángulo entre el vector al centro y el semi-eje mayor de la galaxia $\phi_s < 45$ y $\phi_s > 45$.
- Magnitud de la galaxia $M_r < -19.5$ y $M_r > -19.5$.
- Color de la galaxia g-r < 0.79 y g-r > 0.79
- Concentración $r_{90}/r_{50} < 2.5$ y $r_{90}/r_{50} > 2.5$
- Masa del halo del grupo $\log(M_{\rm halo}/M_{\odot}) < 13.9$ y $\log(M_{\rm halo}/M_{\odot}) < 13.9$.

Solo color, magnitud y masa mostraron cosas interesantes.

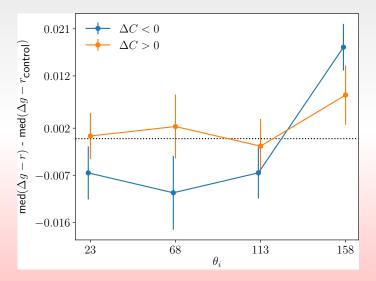


- Introducción
 - Galaxias en caída hacia grupos
 - Ram pressure
 - Evidencias de ram pressure
- Efectos de Ram Pressure en simulaciones
- 3 Análisis del enrojecimiento de quasares de fondo
 - Muestras
 - El método
 - Correcciones a la muestra
 - Resultados
 - Por otras características
- Análisis del efecto sobre la galaxia
 - El método II
 - Resultados II
 - $\Delta C \leftrightarrow$ enrojecimiento del entorno
- 5 Conclusiones


- El objetivo es analizar, de manera similar a TI16, la diferencia en dos mitades de la galaxia en *infall*.
- Como no tenemos datos de SFR separados usamos los colores de cada mitad.
- Si la RP juega un papel en la determinación de la formación estelar (como adelanta TI16) esperamos encontrar una asimetría que depende de la posición relativa grupo-galaxia.

- Tomamos una elipse alrededor de cada galaxia de semieje mayor $\sqrt(a/b)R_{90}$ y menor $\sqrt(b/a)R_{90}$.
- Separamos la elipse en dos mitades iguales, usando el plano paralelo a la dirección del grupo (leading y trailing).
- Para cada mitad calculamos el color promedio (g-r) por píxel $(C_l \ y \ C_t)$.
- Calculamos la diferencia como:

$$\Delta C = \frac{C_l - C_t}{C_l + C_t}$$



ΔC en función de las distancia al centro y de ϕ_s .

- Buscamos si hay una relación entre los dos resultados.
- Tomamos las galaxias que se encuentran a $0.5r_{180}$ y las separamos de acuerdo a ΔC (leading rojo y leading azul).
- Para estas muestras medimos el enrojecimiento de quasares alrededor de las galaxias.

Color de fondo en función de θ_i y ΔC .

- Introducción
 - Galaxias en caída hacia grupos
 - Ram pressure
 - Evidencias de ram pressure
- 2 Efectos de Ram Pressure en simulacione
- 3 Análisis del enrojecimiento de quasares de fondo
 - Muestras
 - El método
 - Correcciones a la muestra
 - Resultados
 - Por otras características
- Análisis del efecto sobre la galaxia
 - El método II
 - Resultados II
 - $\Delta C \leftrightarrow$ enrojecimiento del entorno
- Conclusiones

- Las galaxias sienten el efecto de la ram pressure al entrar en grupos o cúmulos debido al medio intra-grupo.
- Efectos sistemáticos sobre:
 - La forma
 - El entorno.
 - La formación estelar.
- Se han encontrado pruebas de varios de estos efectos en observaciones.
- Se ha observado también en simulaciones hidrodinámicas, y ha sido necesario modelarlo en SAMs.

- En Troncoso-Iribarren et al. (2016). se busca cuantificar el efecto que tiene la RP sobre la formación estelar de las galaxias en EAGLE.
- Para ello se mide la SFR en dos mitades de las galaxias.
- Se encuentra que:
 - Al separar en la dirección de movimiento la SFR suele ser más alta para la *leading half*, no importando la posición al centro.
 - Al separar en la dirección al centro la SFR es más alta en la leading cuando el vector al centro y el vector velocidad tienden a coincidir. En promedio no se ve diferencia.
- No se encuentra diferencia significativa entre grupos relajados y no relajados.

- Por nuestra parte, medimos en observaciones el enrojecimiento de qsos en proyección alrededor de la galaxia, como así también los efectos en la galaxia misma.
- Encontramos que en las zonas más alejadas del centro del grupo alrededor de una galaxia los quasares presentaban un enrojecimiento respecto a otras zonas.
- Además, encontramos que el efecto es mayor para las galaxias más brillantes, más rojas y en los grupos más masivos.
- Se encontró que la *leading-half* tiende a ser más azul en galaxias que caen con un alto ϕ_s , y alejadas del centro.
- Existe una débil relación entre el enrojecimiento alrededor de las galaxias y ΔC .